Congruences for Generalized q-Bernoulli Polynomials
نویسندگان
چکیده
In this paper, we give some further properties of p-adic q-L-function of two variables, which is recently constructed by Kim 2005 and Cenkci 2006 . One of the applications of these properties yields general classes of congruences for generalized q-Bernoulli polynomials, which are qextensions of the classes for generalized Bernoulli numbers and polynomials given by Fox 2000 , Gunaratne 1995 , and Young 1999, 2001 .
منابع مشابه
Further Remarks on Multiple p-adic q-L-Function of Two Variables
Abstract : The object of this paper is to give several properties and applications of the multiple p-adic q-L-function of two variables L (r) p,q (s, z, χ). The explicit formulas relating higher order qBernoulli polynomials, which involve sums of products of higher order q-zeta function and higher order Dirichlet q-L-function are given. The value of higher order Dirichlet p-adic q-L-function fo...
متن کاملCongruences concerning Bernoulli numbers and Bernoulli polynomials
Let {Bn(x)} denote Bernoulli polynomials. In this paper we generalize Kummer’s congruences by determining Bk(p−1)+b(x)=(k(p − 1) + b) (modp), where p is an odd prime, x is a p-integral rational number and p − 1 b. As applications we obtain explicit formulae for ∑p−1 x=1 (1=x ) (modp ); ∑(p−1)=2 x=1 (1=x ) (modp ); (p − 1)! (modp ) and Ar(m;p) (modp), where k ∈ {1; 2; : : : ; p− 1} and Ar(m;p) i...
متن کاملCongruences for degenerate number sequences
The degenerate Stirling numbers and degenerate Eulerian polynomials are intimately connected to the arithmetic of generalized factorials. In this article we show that these numbers and similar sequences may in fact be expressed as p-adic integrals of generalized factorials. As an application of this identiication we deduce systems of congruences which are analogues and generalizations of the Ku...
متن کاملModified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)
The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...
متن کاملCongruences involving Bernoulli polynomials
Let {Bn(x)} be the Bernoulli polynomials. In the paper we establish some congruences for Bj(x) (mod p n), where p is an odd prime and x is a rational p-integer. Such congruences are concerned with the properties of p-regular functions, the congruences for h(−sp) (mod p) (s = 3, 5, 8, 12) and the sum P k≡r (mod m) p k , where h(d) is the class number of the quadratic field Q(d) of discriminant d...
متن کامل